Free full text staphylococcus aureus research literature in 2019

Here we have found the free full-text staphylococcus aureus research literature in 2019.

1. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes

Abstract:

Free full text staphylococcus aureus research literature

Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.

Author: Tam K; Torres VJ
Journal: Microbiol Spectr,2019/03;7(2)
Publication type: Journal Article; Research Support, N.I.H., Extramural; Review
Free full text

2. Staphylococcus aureus TarP: A Brick in the Wall or Rosetta Stone?

Abstract:

Staphylococcus aureus infection elicits antibodies against wall teichoic acid (WTA). Several glycosyltransferases modify WTA to generate anomeric heterogeneity. In recent work, Gerlach et al. (2018) show that modification by prophage-encoded TarP diminishes WTA immunogenicity, allowing staphylococci to evade host adaptive immune responses, and propose to exploit these insights for vaccines.

Author: Missiakas D
Journal: Cell Host Microbe,2019/02/13;25(2):182-183.
Publication type: Journal Article
Free full text

3. Ouabain potentiates the antimicrobial activity of aminoglycosides againstStaphylococcus aureus

Abstract:

BACKGROUND

Staphylococcus aureus is a notorious pathogen which often causes nosocomial and community attained infections. These infections steadily increased after evolving the resistance due to indecorous practice of antibiotics and now become a serious health issue. Ouabain is a Na+/K+-ATPase inhibitor that leads to increase the heart contraction in patients with congestive heart failure.

METHODS

In the present study, in vitro antimicrobial effect of ouabain together with aminoglycosides was determined against clinical and non-clinical S. aureus strains. Using checkerboard, Gentamycin uptake and biofilm assays, we analysed he interactions of ouabain with aminoglycosides.

RESULTS

Ouabain induced the staphylocidal potency of aminoglycosides by remarkably reducing the MIC of gentamycin (GEN) by 16 (0.25 μg/mL), 8 folds (0.5 μg/mL) amikacin (AMK); and 16 folds (1.0 μg/mL) with kanamycin (KAN), compared to their individual doses. OBN severely reduced cell viability within 60 min with GEN (1 μg/mL), KAN (2 μg/mL) and 90 min with AMK (1 μg/mL). This bactericidal effect was enhanced due to GEN uptake potentiated by 66% which led to increase the cell permeability as revealed by leakage of bacterial ATP and nitrocefin assay. The biofilm adherence disrupted by 80 and 50% at 5 mg/mL and 1.5 mg/mL OBN and 50 and 90% biofilm formation was inhibited at 5 mg/mL (MBIC50) and 10 mg/mL (MBIC90), respectively. Moreover, OBN with GEN further induced biofilm inhibition by 67 ± 5% at pH 7.0.

CONCLUSIONS

Taken together, we established that OBN synergizes the antimicrobial activity of aminoglycosides that induces cell killing due to intracellular accumulation of GEN by disturbing cell homeostasis. It may be proven an effective approach for the treatment of staphylococcal infections.

Author: Kumari N; Singh S; Kumari V; Kumar S; Kumar V; Kumar A
Journal: BMC Complement Altern Med,2019/6/06;19(1):119.
Publication type: Journal Article
Free full text

4. Betulinic Acid Prevents the Acquisition of Ciprofloxacin-Mediated Mutagenesis inStaphylococcus aureus

Abstract:

The occurrence of damage on bacterial DNA (mediated by antibiotics, for example) is intimately associated with the activation of the SOS system. This pathway is related to the development of mutations that might result in the acquisition and spread of resistance and virulence factors. The inhibition of the SOS response has been highlighted as an emerging resource, in order to reduce the emergence of drug resistance and tolerance. Herein, we evaluated the ability of betulinic acid (BA), a plant-derived triterpenoid, to reduce the activation of the SOS response and its associated phenotypic alterations, induced by ciprofloxacin in Staphylococcus aureus. BA did not show antimicrobial activity against S. aureus (MIC > 5000 µg/mL), however, it (at 100 and 200 µg/mL) was able to reduce the expression of recA induced by ciprofloxacin. This effect was accompanied by an enhancement of the ciprofloxacin antimicrobial action and reduction of S. aureus cell volume (as seen by flow cytometry and fluorescence microscopy). BA could also increase the hyperpolarization of the S. aureus membrane, related to the ciprofloxacin action. Furthermore, BA inhibited the progress of tolerance and the mutagenesis induced by this drug. Taken together, these findings indicate that the betulinic acid is a promising lead molecule in the development helper drugs. These compounds may be able to reduce the S. aureus mutagenicity associated with antibiotic therapies.

Author: Carvalho Junior AR; Martins ALB; Cutrim BDS; Santos DM; Maia HS; Silva MSMD; Zagmignan A; Silva MRC; Monteiro CA; Guilhon GMSP; Cantanhede Filho AJ; Nascimento da Silva LC
Journal: Molecules,2019/5/07;24(9)
Publication type: Journal Article
Free full text

5. Staphylococcus aureus-induced endothelial permeability and inflammation are mediated by microtubule destabilization

Abstract:

Staphylococcus aureus is a major etiological agent of sepsis and induces endothelial cell (EC) barrier dysfunction and inflammation, two major hallmarks of acute lung injury. However, the molecular mechanisms of bacterial pathogen-induced EC barrier disruption are incompletely understood. Here, we investigated the role of microtubules (MT) in the mechanisms of EC barrier compromise caused by heat-killed S. aureus (HKSA). Using a customized monolayer permeability assay in human pulmonary EC and MT fractionation, we observed that HKSA-induced barrier disruption is accompanied by MT destabilization and increased histone deacetylase-6 (HDAC6) activity resulting from elevated reactive oxygen species (ROS) production. Molecular or pharmacological HDAC6 inhibition rescued barrier function in HKSA-challenged vascular endothelium. The HKSA-induced EC permeability was associated with impaired MT-mediated delivery of cytoplasmic linker-associated protein 2 (CLASP2) to the cell periphery, limiting its interaction with adherens junction proteins. HKSA-induced EC barrier dysfunction was also associated with increased Rho GTPase activity via activation of MT-bound Rho-specific guanine nucleotide exchange factor-H1 (GEF-H1) and was abolished by HDAC6 down-regulation. HKSA activated the NF-κB proinflammatory pathway and increased the expression of intercellular and vascular cell adhesion molecules in EC, an effect that was also HDAC6-dependent and mediated, at least in part, by a GEF-H1/Rho-dependent mechanism. Of note, HDAC6 knockout mice or HDAC6 inhibitor-treated WT mice were partially protected from vascular leakage and inflammation caused by both HKSA or methicillin-resistant S. aureus (MRSA). Our results indicate that S. aureus-induced, ROS-dependent up-regulation of HDAC6 activity destabilizes MT and thereby activates the GEF-H1/Rho pathway, increasing both EC permeability and inflammation.

Author: Karki P; Ke Y; Tian Y; Ohmura T; Sitikov A; Sarich N; Montgomery CP; Birukova AA
Journal: J Biol Chem,2019/03/08;294(10):3369-3384.
Publication type: Journal Article; Research Support, N.I.H., Extramural
Free full text

6. Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of Staphylococcus aureus

Abstract:

Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.IMPORTANCE Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus -mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics.

Author: Grunenwald CM; Choby JE; Juttukonda LJ; Beavers WN; Weiss A; Torres VJ; Skaar EP
Journal: MBio,2019/02/26;10(1)
Publication type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Free full text

More free staphylococcus aureus research literature to find here.